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Abstract

The interaction between the wall vibrations of an elastic cylindrical tube and the inner acoustic field is considered. When

the tube cross section is perfectly circular, acoustic modes are coupled with structural modes having the same

circumferential symmetry. Coupling between modes of different circumferential orders occur when the shell has small

faults in symmetry. An analytical model using the integro-modal method is developed in order to describe these additional

couplings due to shell defects. Attention is focused on the interaction between the acoustic plane mode and the ovalling

shell modes. The mechanical resonance and coincidence effects between the structural and acoustical modes are found;

these account for the perturbations in the input impedance induced by the wall vibrations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The vibracoustics of cylindrical ducts have been widely developed for applications in mechanical
engineering such as, for example, the noise induced by industrial pipes. As a first approach, the interactions
between the acoustic oscillations in the internal fluid and the vibrations of the duct can be described when
considering that the cross section of the duct is perfectly circular. In practice, small faults in the circularity of
the cross section always exist and such flaws in the roundness induce couplings between structural and acoustic
modes which do not exist in the case where the cross section is perfectly circular. The aim of this study is to
present a model which allows us to take these additional couplings, induced by geometrical defects of the shell,
into account.

The final application of this study is related to musical acoustics. It concerns the problem of quantifying the
effect of the wall vibrations of the body of a wind instrument on sound which is emitted [1]. To quantify this
effect, a generic model of a simplified clarinet-like instrument has been developed [2,3] and constitutes the
structure of the investigation presented in this paper. This simplified instrument is a cylindrical vibrating duct,
acoustically excited by particle velocity distribution at the input cross section. It has been shown in Ref. [2]
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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that the wall vibrations induce several vibroacoustic couplings: inner fluid/shell coupling, external fluid/shell
coupling, and coupling induced by acoustic radiation at the open end of the tube. Descriptions of such
couplings are generally complex and lead to the conclusion that, overall, these effects are very small and can be
ignored since they do not induce any audible contribution. However, for some particular characteristics of the
duct (that is, the particular choice of material and geometry), the wall vibration can play a significant role: in
another paper [3], which employs the same notations and formalism as in this study, the acoustic input
impedance of a vibrating cylindrical shell whose cross section is perfectly circular has been studied. It has been
shown that the coupling between the first breathing shell mode and the plane acoustic mode can have a strong
influence on the input impedance of the plane mode if both the spatial coincidence and resonance condition
occur at the same frequency. These conditions can only be satisfied if the eigenfrequency of the first breathing
mode is equal to that of the first acoustic antiresonance of the duct. Moreover, if the eigenfrequency of the first
breathing mode is equal to that of the first acoustic resonance, a splitting of one of the resonance peaks in the
impedance curve can be observed. For fixed geometrical parameters (shell length, thickness and radius), this
kind of condition is only satisfied if the Young’s modulus and the density of the wall material are sufficiently
low, though reaching unrealistic values for the body of a wind instrument. Note that such a model of the
impedance of a vibrating tube can be used to compute the time domain simulations of a clarinet’s sound (see
Ref. [4] for a presentation of the method and Ref. [5] for its application to a vibrating tube). Auditory tests on
the musical sound allows us to determine when the wall vibration effect becomes audible.

Models of non-circular cylindrical shells have been developed in the literature. A thin shell operator is a
differential operator connecting the displacement field of the mean surface of the shell to the external loads
applied to the shell. A presentation of the shell theories is given in Ref. [6]. Such an operator is local and, as
such, depends on the local curvatures of the medium. For a perfect cylinder, the curvatures are equal to the
shell’s radius in one direction and to infinity in the other direction. If the curvatures are dependent on the
point chosen on the shell, then the operator has spatially dependent coefficients. In this case, the motion
equation takes a complicated form, but can be solved using appropriate series expansions: [7]. The radiation of
such distorted shell has been studied using this approach [8,9]. More generally, the description of complicating
effects such as the influence of shell stiffening or defects in the shell introduced by added masses is discussed
in Ref. [10].

The state vector method constitutes another way of computing the vibratory field of a distorted shell. This
method can be applied if a description of the shell vibratory field can be given using separated variables and if
the axial dependence of the field is known. This is the case for infinite or simply supported shells, in which the
axial dependence of the displacement field can be assumed to be proportional to sin(mpx/L). Thus, the motion
equation can be written as a first-order differential equation, depending on the circumferential coordinate.
This kind of equation is called a state equation. A presentation of such equations to model beam, plate and
shell vibrations, for example, is given in Ref. [11–13]. A numerical integration of the state equation whose
parameters depend on the circumferential direction provides the solution to the problem. This method has
been applied in Ref. [14–16] to shells having different types of circumferential profiles.

In this paper, we consider that the shell is slightly distorted, which corresponds to a small ovalization of the
cross-section of the shell. In this case, it is possible to assume that the mode shapes and the eigenfrequencies
are close to their values when the distortion parameter is equal to zero. Following Yousri and Fahy [17], such
a hypothesis allows us to describe the coupling between the acoustic and structural modes of different
circumferential orders within a distorted shell. The main objective of this paper is to determine the influence of
the distorted shell’s vibration on its input impedance matrix.

The structure of the paper is as follows: in Section 2, following the introduction, a model of the acoustic
matrix impedance of a vibrating, slightly distorted shell is presented. The governing equations for the shell/
internal fluid coupled problem fluid equation are given and solved within the framework of the light fluid
approximation. The forced response of the system to a prescribed acoustic excitation is obtained using
projections of the vibratory and acoustic fields on appropriated functional bases: the in vacuo shell modes for
the structural displacement field and acoustical transverse modes for the acoustic field. The in vacuo shell
modes are those of a shell having a perfectly circular cross section. The input impedance matrix is determined
from the forced response of the system. In Section 3, attention is focused on the interaction of the plane
acoustic mode with the first structural modes. Appropriate truncation of the functional bases is presented and
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coupling between the plane acoustic mode and the first structural modes (ovalling mode and breathing mode)
is studied and illustrating examples are given. To conclude, a summary of the results is presented.

2. Vibroacoustic model

2.1. Statement of the problem

2.1.1. Equation of motion for a distorted shell

We consider a thin-walled cylindrical shell of length l, and thickness h. This shell is supposed to be slightly
distorted: its mean radius is a and the variation of its radius is supposed to take the form:

rðyÞ ¼ að1þ � cos tyÞ, (1)

where �51 is the non-dimensional magnitude of the distortion called the distorsion factor. The integer number
t describes the type of distortion along the length of the shell (for an elliptical shell t ¼ 2) and y is the angular
coordinate in the cylindrical system axis (see Fig. 1).

The shell is made from an homogeneous, isotropic material whose Young’s modulus is E, its density is rs

and the Poisson’s ratio is s. The shell is supposed to be simply supported at both ends (z ¼ 0, L).
For a perfectly circular shell (non-distorted case � ¼ 0), the motion equations of the shell in a harmonic

regime can be presented in the following form (convention e�jot is adopted, o being the driving frequency):

rshðo
2
aLþ o2ÞXðMÞ ¼ �pðMÞn for M 2 S, (2)

where oa is the shell ring frequency, L is the Donnell operator, X(M) is the displacement vector of point M,
belonging to the neutral surface S of the shell, p(M) is the inner acoustic pressure and n denotes a unitary
vector normal in the S surface. The displacement vector X(M) takes the form

XðMÞ ¼ uðMÞ vðMÞ wðMÞ
� �T

, (3)

where u(M), v(M), w(M) denote longitudinal, orthoradial and radial displacements of the shell (see Fig. 1).
For a distorted shell, the equation of motion is written in the form:

rsh ~o2
a
~Lþ o2

� �
X ~M
� �

¼ � ~p ~M
� �

n for ~M 2 ~S, (4)

where symbol � refers to elements related to the distorted shell. Parameter ~oa is defined by

~oa yð Þ ¼
1

r yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rS 1� s2ð Þ

s
(5)
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Fig. 1. Representation of the distorted shell; the axial profile and notations (a) and the cross section (b).
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and coincides with the ring frequency in the case of a non-distorted shell (r(y) ¼ a). ~L is the Donnell operator
of the distorted shell and is defined in Eq. (6) by

~L ¼ rðyÞ2

q2

qz2
þ

1� n
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666666664

3
777777775
, (6)

in which z is the axial coordiante, s is the curvilinear coordinate in the circumferential direction, and where the
non-dimensional thickness parameter is defined by ~b ¼ h2=ð12rðyÞ2Þ. For a non-distorted shell, the curvilinear
coordinate s is given by s ¼ ay and expression (6) coincides with the Donnell operator given in Ref. [6]. For a
distorted shell, the derivatives, according to the variable s in Eq. (6), can be expressed as function of the
circumferential coordinate y. Such calculations are presented in detail in Ref. [7] and lead to complex
expressions of the operator. In order to avoid to having to use these, we choose the simplified method
proposed by Yousri and Fahy [17], as presented next.

Note that in relation (4), ~S is the surface of the distorted shell, ~pð ~MÞ is the inner acoustic pressure at point ~M
belonging to ~S and ~Xð ~MÞ is the shell displacement vector.

2.1.2. Helmholtz equation

Inside the cylindrical cavity, the acoustic pressure complies with the Helmholtz equation,

Dþ k2
� �

~p ~M
� �

¼ 0, (7)

where k ¼ o=c is the acoustic wavenumber. The dissipative visco-thermal effects induced by the acoustic
boundary layers can be taken into account by means of the complex sound velocity c (see Ref. [2]).

Eq. (7) is associated with appropriate acoustic boundary conditions in the distorted shell surface ~S and the
cross sections ~S0 (at z ¼ 0) and ~SL (at z ¼ L) (see Fig. 1 for a definition of these surfaces). These surfaces are
denoted without � symbol when referring to a cylinder whose cross section is perfectly circular. On surface ~S0,
the normal acoustic velocity ~vð ~MÞ is supposed to be equal to a known value denoted by v̄S0

ð ~MÞ:

~v ~M
� �

¼ v̄S0
~M

� �
; ~M 2 ~S0. (8)

The acoustic velocity distribution v̄S0
ð ~MÞ is considered as the excitation source of the system. On the lateral

surface ~S, the continuity of the normal velocities of the fluid ~vað ~MÞ and the shell _~wð ~MÞ is expressed as

~vað ~MÞ ¼ _~wð ~MÞ for ~M 2 ~S. (9)

On the surface ~SL, the tube is supposed to be open and we consider that the acoustic pressure is equal to
zero:

~pð ~MÞ ¼ 0 for ~M 2 ~SL. (10)

2.1.3. The coupled problem

The inner acoustic field ~pð ~MÞ and the wall displacement field ~Xð ~MÞ are the solutions to the coupled problem
described by Eqs. (4) and (7), associated with the simply supported boundary conditions for the shell and with
the acoustic boundary conditions (8)–(10). Both acoustic and mechanical equations underly the vibroacoustic
nature of the coupled problem. The resolution method consists of determining the forced response of the
problem to the known velocity distribution v̄S0

ð ~MÞ. This response provides the input acoustic impedance of
the distorted cylinder with vibrating wall, which is the quantity being searched.
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2.2. Resolution method

2.2.1. Expansion of the shell displacement field on a functional basis

The distorted shell displacement field is expanded in the in vacuo shell modes of a shell having a perfectly
circular cross section. These modes take the form

Um ¼

F1m

F2m

F3m

2
64

3
75 ¼

Um cosðqpz=lÞ sinðmyþ sp=2Þ

Vm sinðqpz=lÞ cosðmyþ sp=2Þ

sinðqpz=lÞ sinðmyþ sp=2Þ

2
64

3
75, (11)

where m ¼ (m, q, s) is a set of 3 modal indices: m is the circumferential index, q is the axial index and s is the
symmetry index. There is a fourth modal index, j, called type index, but for thin shells, usually only the smaller
solution, corresponding to j ¼ 1 produces a predominant radial mode. For this study, the value j ¼ 1 is the
only one taken into account. We disregard the other two (j ¼ 2 and 3) due to the fact that the corresponding
eigenfrequencies are in the ultrasound-range frequency. Thus, from now on, the structural modal indices will
be considered as the triplet: m ¼ (m, q, s).

The modal amplitudes Um and Vm are determined using the shell motion equation. The modes Um constitute
a functional basis on which the vibratory field can be expanded [10]. We assume that

~Xð ~MÞ ¼
X
m

~AmUmð ~MÞ, (12)

where ~Am are the unknown modal amplitudes. Such a choice allows us to avoid the computation of the in
vacuo modes of the distorted shell. Moreover, since the ovalization parameter e is small compared to 1, it also
seems reasonable to suppose that the mode shapes of the distorted shell ~Um (associated with the
eigenfrequency ~om) are similar to the mode shapes of the non-distorted shell Um (associated with the
eigenfrequency om). The first important assumption of the model is expressed as

~Um ffi Um. (13)

Assumption (13) implies that the shape of the distorted shell is very close to the shape of the non-distorted
shell. For a non distorted shell, the mode defined by m ¼ (m, q, 0) (having the modal symmetry index s ¼ 0)
has the same axial dependence as the mode m ¼ (m, q, 1), (having the modal symmetry indices s ¼ 1) but is
rotated by angle 2p/m. These two types of modes are degenerate since their eigenfrequencies are exactly the
same. The main difference between the modal basis of the distorted and the non-distorted shell remains in the
fact that the eigenfrequencies of the circular shell are split by the defect in the shell. The frequency shift
induced by this splitting is supposed to be small, but even if it is observable, it does not introduce any
additional coupling effect. Thus, this frequency shift is ignored and results in

~om ffi om (14)

2.2.2. Projection of the equation of motion

Dividing Eq. (4) by ~o2
a and projecting it on mode UT

m0 leads toX
m

~Am

Z
S

rhUT
m0
~LUm dS þ

Z
S

rhUT
m0Um

o2

~o2
a

dS

( )
¼ �

Z
S

UT
m0 ~pn

~o2
a

. (15)

The modes of the distorted shell ~Um associated with the eigenfrequency ~om comply with the homogeneous
equation of motion:

~o2
a
~L ~Um þ ~o2

m
~Um ¼ 0. (16)

Considering assumptions (13) and (14), Eq. (16) leads to

~LUm ffi �
o2

m

~o2
a

Um. (17)
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With this approximation, the shell motion Eq. (15) can be written as

X
m

~Am

Z
S

rhUT
m0
o2 � o2

m

~o2
a

Um dS

( )
ffi �

Z
S

UT
m0 ~pn

~o2
a

dS. (18)

It must be pointed out that the dependency of ~oa ¼ ~oaðyÞ is linked to the distortion of the shell. As a second
important assumption, we ignore this dependency in the left-hand term of Eq. (18) which is written as

X
m

~Am
o2 � o2

m

o2
a

Z
S

rhUT
m0Um dS ffi �

Z
S

UT
m0 ~pn

~o2
a

dS. (19)

The modes Um are normal modes and adhere to the orthogonality relationshipZ
S

rhUT
m0Um dS ¼ mmdmm0 , (20)

where the modal mass mm of the mode Um is defined as

mm ¼

Z
S

rUT
mUm dS (21)

and where dmm0 denotes the Kronecker symbol. Using the orthogonality relationship (20) and the series
expansion,

1

~o2
a

ffi
1þ 2� cosðtyÞ

o2
a

, (22)

relation (19) takes the form

mm0 o2 � o2
m0

	 

~Am0 ffi �

Z
S

ð1þ 2� cosðtyÞÞ ~pðMÞUT
m0 ðMÞndS. (23)

The shell mechanical damping can be taken into account by introducing a structural damping term
(involving Zm0 parameter) for each strutural mode m0 into Eq. (23):

mm0 o2 � o2
m0 ð1� jZm0 Þ

	 

~Am0 ffi �

Z
S

ð1þ 2� cosðtyÞÞ ~pðMÞUT
m0 ðMÞndS. (24)

The above equation (24) shows that coupling between the plane acoustic wave mode and non-axisymmetric
structural modes is permitted by the defects, since, in this case, the right-hand term of the equation does not
equal zero. This equation is equivalent to that presented by Yousri and Fahy in Ref. [17], but using the
notations given in this work.

2.2.3. Determination of the inner acoustic field

In order to compute the forced response of the shell, the acoustic pressure ~pð ~MÞ acting on the shell has to be
replaced in the motion Eq. (24) by its expression, according to the displacement field of the shell. Such an
expression is obtained using the integral representation [18]. Considering that the surfaces S and ~S are the
same, we can write the inner acoustic pressure as

~pð ~MÞ ffi pðMÞ ¼

Z
S0;S;Sl

GðM;M0ÞqnPðMÞ � pðMÞqnGðM;M0Þ½ �dS, (25)

The Green’s function

GðM ;M0Þ ¼
j

2

X
a

Ca M ; yð ÞCn

a M0; yð Þ

kmn

ejkmnjz�z0j, (26)

is the Green’s function of the infinite cylinder satisfying the Neumann boundary conditions in the S surface of
the wall. The acoustic modes Caðr; yÞ are those of a non-distorted cross section and are given by Gautier and
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Tahani [2], Morse and Ingard [19] and Picó et al. [3] as

Ca r; yð Þ ¼ Jm kWmnrð Þ sin myþ sp=2
� �

=La, (27)

where the normalization factor La is

L2
a ¼

pa2

�m

1� g2mn

� �
J2

m kWmnað Þ; with g2mn ¼
0;

m2= kWmnað Þ
2;

m ¼ 0;

m40:

(
(28, 29)

The longitudinal eigenvalue kmn is given by k2
mn ¼ k2

� k2
Wmn (ReðkmnÞX0, ImðkmnÞX0), the radial

eigenvalue kWmn by J 0mðkWmnaÞ ¼ 0 ðkWmnX0; nX0Þ and em is the Neumann factor (em ¼ 1 if m ¼ 0, em ¼ 2 if
m40). The triplet a ¼ (m, n, s) is used to group the 3 indices m, n, s which are the circumferential, radial and
symmetry modals, respectively. Note that in expression (25), it has been assumed that ~Caðr; yÞ ¼ Caðr; yÞ. This
is justified by the fact that the ovalization parameter is supposed to be very small. The modes Caðr; yÞ play the
role of a functional basis upon which the acoustical field can be expanded.

Using relations (8)–(10), the general expression of the field can be expressed as the superposition of
travelling waves propagating in opposite directions with amplitudes according to z:

~pðr; y; zÞ ¼
X

a¼ðm;n;sÞ

f ~Ba þ ~D
þ

a ðzÞg e
jkmnz þ f ~B

�

a þ
~D
�

a ðzÞg e
jkmnð1�zÞ

h i
Caðr; yÞ. (30)

In relation (30), we retain the notation � since this expression takes into account the vibration of the
distorted shell through the amplitude terms ~D

þ

a ðzÞ,
~D
�

a ðzÞ,
~B
þ

a ,
~B
�

a . These are defined by

~D
þ

a zð Þ ¼
�r
2kmn

Z 2p

0

Z z

0

_~w z; yð Þe�jkmnz0Ca a; yð Þrdy, (31)

~D
�

a zð Þ ¼
�r
2kmn

Z 2p

0

Z l

z

_~w z; yð Þe�jkmn z0�lð ÞCa a; yð Þrdy (32)

and

~B
þ

a ¼
1

1þ e2jkmnl
v̄S0
jCa r; yð Þ

� �
S0
þ ~D

�

a 0ð Þ ejkmnl � ~D
þ

a lð Þe2jkmnl
h i

, (33)

~B
�

a ¼
1

1þ e2jkmnl
� v̄S0

jCa r; yð Þ
� �

S0
� ~D

�

a 0ð Þe2jkmnl � ~D
þ

a lð Þejkmnl
h i

. (34)

The inner product / � | �S used in Eq. (33) and (34) is defined by the relationship hf jgi ¼
R

S
fgdS.

2.2.4. Light fluid approximation

The light fluid approximation is considered for the determination of the acoustic pressure ~p, which is
involved in the shell motion Eq. (24). The physical meaning of this approximation is schematically explained
in Fig. 2. The block diagram describes the shell/inner fluid interaction when considering the approximation of
light fluid in the 5 steps. Several relations, using matrix relations which are introduced later, are indicated in
this figure.
1.
 The tube is excited at the entrance in cross section S0 by an imposed velocity of v̄S0
ð ~MÞ.
2.
 An acoustic pressure field termed pa is generated in the tube by the excitation. At this stage, the wall
vibration effect on the inner pressure field is not considered and the pressure pa is called ‘blocked pressure’.
This blocked pressure pa is noted without � because it does not depend on the wall distortion.
3.
 The distorted shell displacement field ~X is induced by the inner acoustic field pa. Even if pa is calculated
without accounting for the shell distortion, ~X is notated with � because the displacement field depends on
the distortion of the shell. Part of the acoustic energy of the air column is transformed into the vibrating
energy of the shell.
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4.
 In turn, the wall vibration generates an additional acoustic radiated field ~pr in the resonator.

5.
 The resulting inner acoustic field of a vibrating shell ~p is the sum of two contributions: The acoustic field

arising from the acoustic excitation of the tube at the entrance (pa) and the radiated field generated by the
wall vibration effect ð ~prÞ.

Such an approach can be used to compute the solution to the coupled problem employing successive
approximations of the fields: the pressure ~p ¼ pa þ ~pr being obtained, in turn can be used to calculate the shell
response. The acoustic field radiating from the shell can then be computed and constitutes an approximation
of the acoustic field of a higher order. Such a computation can be repeated and the complete procedure can
be organised in an iterative manner in order to converge with the solution for the coupled problem.
A formulation for this iterative method is given in Ref. [20].

In the light fluid approximation, wall vibration is supposed to be generated by the blocked acoustic pressure
pa and not by the radiated field engendered by the walls ~p ¼ pa þ ~pr. This corresponds to the first step of the
iterative method mentioned above. Such an approximation is equivalent to ignoring the effect of the internal
radiation impedance of the shell.

Assuming the light fluid approximation, the inner acoustic pressure which is present in the right-hand term
of the equation of motion (24) is supposed to be pa and is computed by ignoring the wall vibration. This is
equivalent to setting coefficients ~D

þ

a ðzÞ,
~D
�

a ðzÞ to zero in relation (30):

pa r; y; zð Þ ¼
X

a¼ m;n;sð Þ

Bþa e
jkmnz þ B�a e

jkmnðl�zÞ
� �

Ca r; yð Þ. (35)

The amplitudes Bþa , B�a are expressed as the projection of the velocity distribution constituting the excitation
field in the acoustical modes Caðr; yÞ:

Bþa ¼
1

1þ e2jkmnl
v̄S0
jCa r; yð Þ

� �
S0
, (36)

B�a ¼
1

1þ e2jkmnl
v̄S0
jCa r; yð Þ

� �
S0
. (37)
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2.2.5. Modal coupling induced by shell distortion

Once the acoustic pressure is obtained as a multimodal expansion, the coupling between the acoustic modes
and the structural modes can be evaluated. For this purpose, the expression of the internal pressure (35) is
replaced in the right-hand term of the shell motion Eq. (24). It is established that the coupling termR

S
~pUT

m0nð1þ 2� cosðtyÞÞdS is the sum of two contributions In and IdZ
S

~pUT
m0n 1þ 2� cos tyð Þð ÞdS ¼

Z
S

paU
T
m0n 1þ 2� cos tyð Þð ÞdS ¼ In þ Id , (38)

where

In ¼

Z
S

paU
T
m0ndS

¼
X
a

jro
kmn

1

a

ffiffiffiffiffi
�m
p

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2mn

p q0p
l

tan kmnlð Þ

k2
mn � q0p=l

� �2 vS0
jCa

� �
iam0 ð39Þ

and

Id ¼ 2�

Z
S

paU
T
m0n cosðtyÞdS

¼ �
X
a

jro
kmn

1

a

ffiffiffiffiffi
�m

p

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2mn

p q0p
l

tan kmnlð Þ

k2
mn � q0p=l

� �2 vS0
jCa

� �
Iam0 . ð40Þ

In these relations (39) and (40), the implicit notation m0 ¼ ðm0; q0; s0Þ and a ¼ ðm; n; sÞ is assumed. The first
contribution In is independent of the distortion parameter e and refers to the fluid/shell coupling of a non-
distorted shell. The term iam0 , which is present in the sum (39), is given by

iam0 ¼

Z 2p

0

sin myþ sp=2
� �

sin m0yþ s0p=2
� �

dy ¼
2p
�m

1� dm0ds0ð Þdmm0dss0 . (41)

As shown in expression (41), modal coupling between different family modes is forbidden by the term
dmm0dss0 . In particular, this implies that the plane mode ðm ¼ 0Þ is uncoupled to structural modes of order
m0a0.

The second contribution Id describes the specific coupling induced by the defects in the shell and vanishes in
the case of the non-distorted shell. The term Iam0 , present in the expression of Id, is given by

Iam0 ¼

Z 2p

0

sin myþ sp=2
� �

sin m0yþ s0p=2
� �

cos tyð Þdy. (42)

It depends on the modal numbers m, m0, s, s0 and on the parameter t relating to the type of circumferential
defect of the shell. Rather than writing out the long expression for Iam0 in the general case, we give its value in
the special case t ¼ 2. Here, it can be shown that integral (42) is non-null only when

mþm0 ¼ 2 (43)

and if condition (43) is satisfied, this results in

Iam0 ¼
p �1ð Þdmm0

1þ dmm0
1� dm0ds0ð Þ 1� dm00ds00ð Þdss0 . (44)

Indices m and m0 being natural numbers, only three couples of values provide non-null values of Iam0 :
(m ¼ 0, m0 ¼ 2), (m ¼ 2, m0 ¼ 0) and (m ¼ 1, m0 ¼ 1). Expression (44) provides useful information concerning
the modal couplings. Iam0 is null if symmetry indices s and s0 are different, or if (s ¼ 0 and m ¼ 0) or if (s0 ¼ 0
and m0 ¼ 0). The distortion of the shell introduces the presence of an additional coupling between acoustical
and structural modes of different circumferential indices: the plane acoustic mode is coupled to the ovalling
modes of the shell (m ¼ 0, m0 ¼ 2). In addition, the breathing modes are coupled to the second-order acoustic
modes (m ¼ 2, m0 ¼ 0). Finally, the bending modes are coupled to the first order acoustic modes (m ¼ 1,
m0 ¼ 1).
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The main conclusion of this paragraph is the expression of the coupling term (38), which is involved in the
shell motion Eq. (24). The integrals iam0 and Iam0 , given by Eqs. (41) and (44), provide the necessary conditions
in the modal indices to permit modal coupling. It is shown that couplings between acoustic modes and
structural modes having circumferential indices are permitted by the distortion in the shell.

2.3. Determination of the input impedance matrix

Once the modal coupling is evaluated, the expression of the input acoustic impedance can be obtained. For
this purpose, a matrix notation will be used (see Appendix A) in order to represent the multimodal
formulation. In this notation, Eq. (24) can be written as

MA ¼ EV, (45)

where M is a diagonal matrix whose elements consist of the expression mm0 ð�o2 þ o2
m0 ð1� jZm0 ÞÞ calculated for

each modal index of the structural modal basis. In Eq. (45), the amplitude vector V for the acoustic velocity is
given since the velocity is prescribed for the input surface S0. Vector A represents the amplitude of the wall
vibrations and matrix E (see Appendix A) the shell/fluid coupling. This coupling can be separated into two
contributions (non-distorted coupling and distorted coupling):

E ¼ En þ �Ed. (46)

Both vector A and matrix E can be deduced from Eq. (24). For a particular pattern of wall vibration
amplitude generated by the acoustic field pa, the inner acoustic pressure radiated ~pr by the shell is shown in the
form of a multimodal acoustic expansion given by Eq. (30). By projecting the inner pressure onto a particular
mode Ca of the acoustic basis on surface S0, we obtain

~p ~M
� �
jCa

� �
S0
¼ Bþa þ

~D
þ

a 0ð Þ þ B�a þ
~D
�

a 0ð Þ
� �

ejkmnl . (47)

Note that, again, the light fluid approximation has been used when writing Bþa (and Bþa ) instead of ~B
þ

a
(and ~B

�

a ).
Using the matrix notation given in Appendix A, the expression of the projections of the inner pressure on

the transverse acoustic modes (47) can be expressed in the form:

P ¼ ZrVþQA, (48)

where matrix Q can be deduced from Eqs. (31)–(34) and (47) and expressed in the matrix form as (see
Appendix A for the matrix notations)

Q ¼ Qn þ �Qd . (49)

The impedance matrix Zr in Eq. (46) is the impedance matrix of a rigid cylindrical duct. Indeed, for a rigid
wall, we have A ¼ 0 and, therefore, in this case, we simply have P ¼ ZrV. Eqs. (45) and (48) provide an
expression of the acoustic input impedance of the distorted shell:

Z ¼ Zr þ ðQn þ �Qd ÞM
�1ðEn þ �EdÞ. (50)

By expanding this Eq. (50), we obtain an expression of the acoustic input impedance of a slightly distorted
vibrating shell

Z ¼ Zr Iþ Zr�1QnM
�1En þ �Z

r�1ðQdM
�1En þQnM

�1Ed Þ þ �
2Zr�1QdM

�1Ed

	 

. (51)

3. Wall distortion influence on the acoustic input impedance

3.1. Truncations of the functional basis

The functional basis used to expand the shell displacement field is constituted by the shell modes whose
cross section is perfectly circular. It has been established that the eigenfrequencies of such a shell are not
ordered in the same way as the modal indices. In particular, the fundamental frequency (that is the lowest



ARTICLE IN PRESS

543210

Circumferential number m

0

2000

4000

6000

8000

10000

12000

14000

S
h
e
ll 

e
ig

e
n
fr

e
q
u
e
n
c
y
 (

H
z
)

Fig. 3. Shell eigenfrequencies of a steel shell (E ¼ 210GPa, s ¼ 0.28, r ¼ 7800 kg/m3, a ¼ 14.25mm, L ¼ 0.5m, h ¼ 0.5mm) for different
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bending modes (m ¼ 1) and ovalling modes (m ¼ 2) are lower in frequency than those for the breathing modes (m ¼ 0).
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eigenfrequency) does not generally correspond to the first breathing mode, but to a mode associated with a
higher circumferential index. A discussion concerning the value of the lowest eigenfrequency (also called
fundamental frequency) of a shell is given in Ref. [21]. This point is illustrated in Fig. 3: the dispersion curves
and eigenfrequencies modes of a shell made of steel (the characteristics are given in Table 2) are presented
depending on the values of the modal indices q and m. Using Fig. 3, the lowest eigenfrequency is found for
m ¼ 2, q ¼ 1 corresponding to the first ovalling mode.

Acoustic and shell modal indices are represented by a ¼ (m, n, s) and m0 ¼ (m0, q0, s0), respectively. The
simplest modal truncation, rendering the effect of the shell distortion, will be considered. Thus, the
circumferential indices m and m0 vary from 0 to 2 in order to take into account the coupling between different
shell family modes. The symmetry indices s and s0 vary from 0 to 1 to allow for the asymmetry of the shell.
Indices q0 and n take the first value of the truncation (q0 ¼ 1 and n ¼ 0). With this choice of modal indices,
the set of modes include six acoustic modes and six shell modes represented in Figs. 4 and 5: values of a are
(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 0, 1) and values of m0 are (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1),
(2, 1, 0), (2, 1, 1).

3.2. The interaction between the plane acoustic mode and the first ovalling shell modes: expression of the

correction factor for the input impedance

The influence of the angular distortion of the shell on the acoustic behaviour of the tube is considered in the
case of the particular truncation defined in Section 3.1. The matrices Q,M and E are presented in Appendix B.
The factor correction of the plane mode can be expressed as

Zð0;0;1Þð0;0;1Þ ¼ Zr
ð0;0;1Þð0;0;1Þ 1þ Cð0;0;1Þð0;0;1Þ

	 

, (52)

where

C 0;0;1ð Þ 0;0;1ð Þ ¼ Cn þ Cd , (53)

Cn ¼ Z�1ð0;0;1Þð0;0;1ÞQ 0;0;1ð Þ 0;1;1ð ÞM
�1
0;1;1ð Þ 0;1;1ð ÞE 0;1;1ð Þ 0;0;1ð Þ

¼
prc

m 0;1;1ð Þ

p
l

	 
2 o tanðol=cÞ

o=c
� �2

� p=l
� �2h i2

o2 � o2
0;1;1ð Þ

1� jZ 0;1;1ð Þ

	 
h i 2� �ð Þ
2

ð54Þ
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Fig. 4. Representation of the first transverse acoustic modes used for the numerical investigation presented in Section 3.3. Each mode is

referred by the set of modal indices, a ¼ (m, n, s) where m is the circumferential index (m ¼ 0, 1, 2), n the radial index (n ¼ 0), and s the

index of symmetry (s ¼ 0, 1).
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Fig. 5. Representation of the first structural modes used for the numerical investigation presented in Section 3.3 Each mode is referenced

by the set of modal indices, m ¼ (m, q, s) where m denotes the circumferential index (m ¼ 0, 1, 2), q denotes the axial index (q ¼ 1) and s is

the index of symmetry (s ¼ 0, 1).
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and

Cd ¼ Z�1ð0;0;1Þð0;0;1ÞQ 0;0;1ð Þ 2;1;1ð ÞM
�1
2;1;1ð Þ 2;1;1ð ÞE 2;1;1ð Þ 0;0;1ð Þ

¼ 4�2
prc

m 2;1;1ð Þ

p
al

	 
2 o tanðol=cÞ

o=c
� �2

� p=l
� �2h i2

o2 � o2
2;1;1ð Þ

1� jZ 2;1;1ð Þ

	 
h i . ð55Þ
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As such, the correction factor of the input acoustic impedance of the plane mode given by Eq. (52) can be
interpreted as the sum of two contributions: the first one represents the fluid/shell coupling corresponding to a
shell with a perfectly cylindrical cross-section Cn. As presented in Ref. [3], this term tends towards a maximum
when a mechanical resonance is reached. This mechanical resonance is characterized by the eigenfrequency of
the first breathing mode (o(0, 1, 1)), and its structural damping coefficient (Z(0, 1, 1)). The second contribution Cd

is an additional term relating to the coupling of the first ovalling mode (2, 1, 1) and the plane acoustic mode.
This term is proportional to the distortion of the shell e and tends towards a maximum when a mechanical
resonance for the ovalling mode is reached: this mechanical resonance is characterized by the eigenfrequency
of the first ovalling mode (o(2, 1, 1)), and its structural damping coefficient (Z(2, 1, 1)).

It can be seen from Eq. (52) that the input acoustic impedance of the plane mode can be drastically
perturbed by the wall vibration if the correction factor C(0, 0, 1)(0, 0, 1) is significant when compared to unity.
As presented in Ref. [3], three conditions lead to large values for both the correction factors Cn and Cd in
Eqs. (54) and (55) and three phenomena underpin this singular behaviour: a spatial coincidence effect,
mechanical resonances and acoustic resonances. If two of these phenomena simultaneously occur, the
perturbation effect becomes significant and the acoustic resonances and antiresonances of the tube can be
altered significantly.

3.3. Analysis of the variation correction factor versus frequency

The correction factor of the input acoustic impedance is analysed in this paragraph in order to establish and
identify the contribution of the distortion of the shell to the acoustic response of the tube. The geometrical
features of the shell which are used for the numerical applications are: length l ¼ 0.5m, radius a ¼ 14.25mm,
thickness h ¼ 0.35mm, and the distortion parameter is fixed at e ¼ 0.05. Fig. 6 represents the two
contributions made by the correction factor against the frequency of a shell made of steel: the non-distorted Cn

and the distorted Cd correction factor. It can be seen that, at low frequencies, the coupling resulting from the
shell distortion is more important than that resulting from the non-distorted contribution. The elliptical
distortion of the cross-section of the shell permits the coupling between the plane mode and the first ovalling
shell mode. The eigenfrequency of the first breathing shell mode (fRb1 ¼ 3243Hz) can be identified as a peak in
Rb1
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Fig. 6. The distorted (________ Cd) and non-distorted (...... Cn) correction factor of the acoustic input impedance induced by the wall

vibration measured against frequency. The thickness of the shell is h ¼ 0.35mm and the material used is steel: its Young’s modulus is

E ¼ 210� 109N/m2, its Poisson’s ratio is s ¼ 0.28 and its density rS ¼ 7800 kg/m3. Cn is altered by the eigenfrequency of the first

breathing shell mode (fRb1 ¼ 3243Hz) which is greater than the peak in Cd which corresponds to the eigenfrequency of the first ovalling

shell mode (fRo1 ¼ 1159Hz).
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the non-distorted correction factor. The eigenfrequency of the first ovalling shell mode (fRo1 ¼ 1159Hz) can
be observed as a maximum of the distorted correction factor.

In Fig. 6, it can be seen that fRo1 is smaller than fRb1. In these conditions, the coupling of lower frequency
modes (ovalling modes) with the air column can be produced, providing more important effects on the
acoustic behaviour of the tube.

3.4. Study of configurations leading to important value of the correction factor

3.4.1. Influence of the material and shell thickness on the correction factor

For some materials, the eigenfrequency of the first ovalling mode can be sufficiently low to match the first
acoustic eigenfrequencies. This configuration leads to a strong perturbation of the acoustic input impedance of
the tube. Numerical tests have shown that this is the case for lead, silver, gold and tin. In Fig. 7, the
eigenfrequency of the first ovalling shell mode is represented against the thickness of the different shells made
from these materials. It can be seen that, in such cases, the mechanical resonance can be produced at
frequencies close to the acoustic resonance of the tube. These resonances are indicated in Fig. 7. Intersection
points indicated by circles provide the values of the shell thickness for which the eigenfrequency of the first
ovalling mode matches with an acoustic eigenfrequency.

In the case of silver, the thickness of the shell can be adjusted in order to superpose the first mechanical
resonance of the shell with the second acoustic resonance at 515.1Hz. The thickness is found to be
h ¼ 0.466mm as shown in Fig. 7. The correction factor and the acoustic input impedance of this silver shell
are represented in Fig. 8a and b. Important changes in the first two acoustic resonances of the acoustic
impedance due to wall vibrations in the distorted shell can be seen in both cases when compared with the non-
vibrating shell reference. Thus, the acoustic behaviour of the shell is notably affected by the vibroacoustic
coupling engendered by the distortion of the shell.

3.4.2. Influence of the distortion parameter on the correction factor

Provided that the distortion of the shell is mainly responsible for the significance of the fluid/shell coupling,
an in-depth evaluation of this relationship is of interest. Fig. 9 shows the non-distorted correction factor
corresponding to shells with different distortion factors (e ¼ 0.05, 0.25 and 0 that corresponds to a non-
distorted shell). It can be seen that the greater the distortion, the greater the correction factor of the acoustic
input impedance will be, and, as such, the wall vibration effect will be greater. For this shell, a distortion factor



ARTICLE IN PRESS

10
1

10
2

10
3

10
2

10
3

Frequency (Hz)Frequency (Hz)

SILVER (h = 0.446mm) SILVER (h = 0.446mm)
C

o
rr

ec
ti

o
n
 f

ac
to

r

Im
p
ed

an
ce

 (
R

ay
ls

)

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

10
2

a b

Fig. 8. (a) The correction factor and (b) the input acoustic impedance (________ Za) of a wall vibrating cylinder made of silver

(E ¼ 30� 109N/m2, its Poisson’s ratio is s ¼ 0.37 and its density rS ¼ 10,490 kg/m3). The reference of the acoustic input impedance of a

rigid shell is represented (...... Zr) in (b). The geometry of the shell is: length l ¼ 0.5m, radius a ¼ 14.25mm and thickness h ¼ 0.466mm

and the distortion parameter is fixed at e ¼ 0.05. The eigenfrequency of the first ovalling mode (fb1) is placed at the third acoustic

resonances (f3).

10
-6

10
-4

10
-2

10
0

10
2

10
2

10
3fR01= f3

SILVER (h = 0.466mm)

frecuency (Hz)

Ro1

C
o
rr

ec
ti

o
n
 f

ac
to

r

Fig. 9. The correction factor for four distorted shells, each made of silver each different from the other (E ¼ 30� 109N/m2, s ¼ 0.37,

rS ¼ 10,490 kg/m3). The distortion factor of each shell is ________ e ¼ 0.05, ––– e ¼ 0.025 and ...... e ¼ 0 (the latter is non-distorted). The

geometry of the shell is such that the eigenfrequency of the first ovalling mode (fb1) matches with the third acoustic resonances (f3).
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greater than e ¼ 0.025 provides a significant correction factor (greater than unity). However, it must be
pointed out that these distortion factors are beyond the reaches of the validity of the vibroacoustic model
hypothesis (limitations presented in Eqs. (13), (14) and (22)).

3.4.3. Influence of the structural damping coefficient on the correction factor

Although the distortion factor of the shell is very small, the wall vibration effect can be very important when
the structural damping of the modes of the shell (Z) is sufficiently small. In Fig. 10, the correction factor of
three different distorted shells made of silver with different structural losses (Z ¼ 0.1, 0.01 and 0.001) have
been represented. The distortion parameter is always e ¼ 0.01, that is, the distortion represents 1% of the
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radius: 0.14mm of distortion compared to 14.25mm. Parameters E, s, rS and h have been selected to allow the
eigenfrequency of the first ovalling mode to coincide with the third acoustic resonance of the tube. In Fig. 10,
it can be observed that the curve corresponding to a shell having a material with structural losses of Z ¼ 0.001,
greatly surpasses unity. In this case, the wall vibration effect is significant.
4. Conclusion

A vibroacoustic model of a simply supported distorted cylindrical shell has been developed and the influence
of the distortion of the shell on the inner fluid/shell coupling has been quantified. It is shown that the shell
distortion induces coupling between modes whose circumferential indices are different and the coupling
coefficients between these modes can be predicted using the model. The influence of the wall vibration on the
acoustic behaviour of a distorted tube can be understood as a correction of the acoustic matrix impedance
which is called the ‘‘correction factor’’. The correction factor of the input acoustic impedance matrix of the
distorted vibrating resonator was obtained as a sum of two contributions: the first Cn describes the interaction
between the breathing modes and the plane acoustic mode; and, the second Cd describes the interaction
between the ovalling modes and the plane acoustic mode. When considering slightly distorted shells, this
second factor can be more important than the first. As a matter of fact, for some materials, the shell
mechanical response is of such a nature that the eigenfrequency of the ovalling modes is sufficiently small to
alter the first peaks of the acoustic input impedance of the tube. A numerical application permits the
presentation of the interaction between the plane acoustic mode and the first ovalling mode when the
distortion of the shell is small. Previous experimental results obtained with slightly distorted organ pipes can
be interpreted using the proposed model. The validity of the results is limited by the hypothesis of the
model: the distortion of the shell must be very small. This model confronts a well-known problem within the
field of wind instruments: the wall vibration effect. Simulations in the time domain of distorted tubes could
provide additional information about the fluid/shell coupling through the oscillation regime and vibrating
distorted pipes.
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Appendix A. Matrix notations

The matrix formulation of the problem is useful for the description of the multimodal approach. Thus,
vectors

Am ¼

A m;1;sð Þ

..

.

A m;Q;sð Þ

2
664

3
775, (A.1)

Pm ¼

P m;0;sð Þ ¼ pjC m;0;sð Þ

� �
..
.

P m;N ;sð Þ ¼ pjC m;N ;sð Þ

� �

2
6664

3
7775, (A.2)

Vm ¼

V m;0;sð Þ ¼ V S0
jC m;0;sð Þ

� �
..
.

V m;N;sð Þ ¼ V S0
jC m;N ;sð Þ

� �

2
6664

3
7775, (A.3)

describe the unknown modal amplitudes for a given circumferential index m. For each m, the mechanical basis
is truncated to the Q modes and the acoustic basis is reduced to the N modes. Grouping these amplitude
vectors as

A ¼

A1

..

.

Am

..

.

AM

2
666666664

3
777777775
, (A.4)

P ¼

P1

..

.

Pm

..

.

PM

2
666666664

3
777777775
, (A.5)

V ¼

V1

..

.

Vm

..

.

VM

2
666666664

3
777777775
, (A.6)

we obtain modal amplitude vectors for the shell displacement A, the acoustic pressure P and the velocity V.
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The rigid impedance matrix Zr is a diagonal matrix that corresponds to the input acoustic impedance of the
cylinder with rigid walls, and therefore, it does not take the wall vibration effect into consideration:

Zr ¼

Zr
ð0;0;0Þ;ð0;0;0Þ 0 0

0 . .
.

0

0 0 Zr
ðm;n;sÞ;ðm0 ;n0;s0Þ

2
6664

3
7775. (A.7)

The boldtype of Zr represents the matrix character of the rigid impedance and each element written in italics
represents a scalar. Matrix M describes the mechanical behaviour of the shell:

M ¼

M ð0;1;0Þ;ð0;1;1Þ 0 0

0 . .
.

0

0 0 Mðm;q;sÞ;ðm0 ;q0 ;s0Þ

2
6664

3
7775. (A.8)

Matrices Q and E contain the vibroacoustic coupling terms:

E ¼

Eð0;1;0Þ;ð0;0;0Þ � � � Eð0;1;0Þ;ðm;n;sÞ

..

. . .
. ..

.

Eðm0;q0 ;s0Þ;ð0;0;0Þ � � � Eðm0 ;q0 ;s0Þ;ðm;n;sÞ

2
664

3
775 (A.9)

and

Q ¼

Qð0;0;0Þ;ð0;1;0Þ � � � Qð0;0;0Þ;ðm0;q0;s0Þ

..

. . .
. ..

.

Qðm;n;sÞ;ð0;1;0Þ � � � Qðm;n;sÞ;ðm0 ;q;s0Þ

2
6664

3
7775. (A.10)

The product of Q M�1 E provides the correction factor wich is not a diagonal matrix due to the fact that
neither Q nor E are diagonal. The off-diagonal terms of matrix C represent the coupling between the shell
modes and acoustic modes.

Appendix B. Matrix notations for the truncation considered

In order to evaluate the wall vibration effect on the acoustic behaviour of the shell, the simplest modal
truncation resulting in the effect of shell distortion has been considered. Thus, m and m0 vary from 0 to 2, s and
s0 vary from 0 to 1 and indices q and n take the first value of the truncation (q ¼ 1 and n ¼ 0). This implies that
the coupling between six acoustic modes and six shell modes is taken into account. For this truncation,
matrices Qam0 ¼ Qðm;n;sÞðm0 ;q0 ;s0Þ, Mmm0 ¼Mðm;q;sÞðm0q0;s0Þ and Em0a ¼ Eðm0;q0;s0Þðm;n;sÞ can be represented as (6� 6)
matrices:

Qam0 ¼

0 0 0 0 0 0

0 Q 0;0;1ð Þ 0;1;1ð Þ 0 0 0 Q 0;0;1ð Þ 2;1;1ð Þ

0 0 Q 1;0;0ð Þ 1;1;0ð Þ 0 0 0

0 0 0 Q 1;0;1ð Þ 1;1;1ð Þ 0 0

0 0 0 0 Q 2;0;0ð Þ 2;1;0ð Þ 0

0 Q 2;0;1ð Þ 0;1;1ð Þ 0 0 0 Q 2;0;1ð Þ 2;1;1ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

(B.1)
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and

Mmm0 ¼

M 0;1;0ð Þ 0;1;0ð Þ 0 0 0 0 0

0 M 0;1;1ð Þ 0;1;1ð Þ 0 0 0 0

0 0 M 1;1;0ð Þ 1;1;0ð Þ 0 0 0

0 0 0 M 1;1;1ð Þ 1;1;1ð Þ 0 0

0 0 0 0 M 2;1;0ð Þ 2;1;0ð Þ 0

0 0 0 0 0 M 2;1;1ð Þ 2;1;1ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
, (B.2)

Em0a ¼

0 0 0 0 0 0

0 E 0;1;1ð Þ 0;0;1ð Þ 0 0 0 E 0;1;1ð Þ 2;0;1ð Þ

0 0 E 1;1;0ð Þ 1;0;0ð Þ 0 0 0

0 0 0 E 1;1;1ð Þ 1;0;1ð Þ 0 0

0 0 0 0 E 2;1;0ð Þ 2;0;0ð Þ 0

0 E 2;1;1ð Þ 0;0;1ð Þ 0 0 0 E 2;1;1ð Þ 2;0;1ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
, (B.3)

where

Q 0;0;1ð Þ 0;1;1ð Þ ¼ �
ro2

k

p
ffiffiffi
p
p

al

tan klð Þ

k2
� p=l
� �2 2� �ð Þ,

Q 1;0;0ð Þ 1;1;0ð Þ ¼ Q 1;0;1ð Þ 1;1;1ð Þ ¼ �
ro2

l

p
ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k10að Þ
2
� 1

q tan k10lð Þ

k2
10 � p=l

� �2 1� �ð Þ,

Q 2;0;0ð Þ 2;1;0ð Þ ¼ Q 2;0;1ð Þ 2;1;1ð Þ ¼ �
ro2

l

p
ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20að Þ
2
� 1

q tan k20lð Þ

k2
20 � p=l

� �2 1� �ð Þ,

Q 0;0;1ð Þ 2;1;1ð Þ ¼ �
ro2

k

p
ffiffiffi
p
p

al

tan klð Þ

k2
� p=l
� �2 2�,

Q 2;0;1ð Þ 0;1;1ð Þ ¼ �
ro2

l

p
ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20að Þ
2
� 1

q tan k20lð Þ

k2
20 � p=l

� �2 2�

and where

M m;n;sð Þ; m;n;sð Þ ¼ m m;n;sð Þðo2 � o2
m;n;sð Þð1� jZ m;n;sð ÞÞÞ

and finally

E 0;1;1ð Þ 0;0;1ð Þ ¼
jro
k

p
ffiffiffi
p
p

al

tan klð Þ

k2
� p=l
� �2 2� �ð Þ,

E 1;1;0ð Þ 1;0;0ð Þ ¼ E 1;1;1ð Þ 1;0;1ð Þ ¼
jro

l

p
ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k10að Þ
2
� 1

q tan k10lð Þ

k2
10 � p=l

� �2 1� �ð Þ,

E 2;1;0ð Þ 2;0;0ð Þ ¼ E 2;1;1ð Þ 2;0;1ð Þ ¼
jro

l

p
ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20að Þ
2
� 1

q tan k20lð Þ

k2
20 � p=l

� �2 1� �ð Þ,
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E 2;1;1ð Þ 0;0;1ð Þ ¼
jro

k

p
ffiffiffi
p
p

al

tan klð Þ

k2
� p=l
� �2 2�,

E 0;1;1ð Þ 2;0;1ð Þ ¼
jro

l

p
ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20að Þ
2
� 1

q tan k20lð Þ

k2
20 � p=l

� �2 2�.

The impedance correction ðZ ¼ Zr þ ZcÞ for this truncation can be evaluated using the product of matrices
(B.1)–(B.3) as

Zc
aa000 ¼ Qam0M

�1
m0m00Em00a000 ,

Zc
ðm;n;sÞðm000 ;n000;s000Þ ¼ Qðm;n;sÞðm0;q0 ;s0ÞM

�1
ðm0;q0;s0Þðm00 ;q00 ;s00ÞEðm00;q00;s00Þðm000;n000;s000Þ,

Zc
aa0 ¼

0 0 0 0 0 0

0 Zc
0;0;1ð Þ 0;0;1ð Þ 0 0 0 Zc

0;0;1ð Þ 2;0;1ð Þ

0 0 Zc
1;0;0ð Þ 1;0;0ð Þ 0 0 0

0 0 0 Zc
1;0;1ð Þ 1;0;1ð Þ 0 0

0 0 0 0 Zc
2;0;0ð Þ 2;0;0ð Þ 0

0 Zc
2;0;1ð Þ 0;0;1ð Þ 0 0 0 Zc

2;0;1ð Þ 2;0;1ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
, (B.4)

where

Zc
0;0;1ð Þ 0;01ð Þ ¼ Q 0;0;1ð Þ 0;1;1ð ÞM

�1
0;1;1ð Þ 0;1;1ð ÞE 0;1;1ð Þ 0;0;1ð Þ þQ 0;0;1ð Þ 2;1;1ð ÞM

�1
2;1;1ð Þ 2;1;1ð ÞE 2;1;1ð Þ 0;0;1ð Þ,

Zc
ð0;0;1Þð2;0;1Þ ¼ Q 0;0;1ð Þ 0;1;1ð ÞM

�1
0;1;1ð Þ 0;1;1ð ÞE 0;1;1ð Þ 2;0;1ð Þ þQ 0;0;1ð Þ 2;1;1ð ÞM

�1
2;1;1ð Þ 2;1;1ð ÞE 2;1;1ð Þ 2;0;1ð Þ,

Zc
1;0;0ð Þ 1;0;0ð Þ ¼ Q 1;0;0ð Þ 1;1;0ð ÞM

�1
1;1;0ð Þ 1;1;0ð ÞE 1;1;0ð Þ 1;0;0ð Þ,

Zc
ð1;0;1Þð1;0;1Þ ¼ Q 1;0;1ð Þ 1;1;1ð ÞM

�1
1;1;1ð Þ 1;1;1ð ÞE 1;1;1ð Þ 1;0;1ð Þ,

Zc
2;0;0ð Þ 2;0;0ð Þ ¼ Q 2;0;0ð Þ 2;1;0ð ÞM

�1
2;1;0ð Þ 2;1;0ð ÞE 2;1;0ð Þ 2;0;0ð Þ,

Zc
2;0;1ð Þ 0;0;1ð Þ ¼ Q 2;1;1ð Þ 0;1;1ð ÞM

�1
0;1;1ð Þ 0;1;1ð ÞE 0;1;1ð Þ 0;0;1ð Þ þQ 2;0;1ð Þ 2;1;1ð ÞM

�1
2;1;1ð Þ 2;1;1ð ÞE 2;1;1ð Þ 0;0;1ð Þ,

Zc
2;0;1ð Þ 2;0;1ð Þ ¼ Q 2;0;1ð Þ 0;1;1ð ÞM

�1
0;1;1ð Þ 0;1;1ð ÞE 0;1;1ð Þ 2;0;1ð Þ þQ 2;0;1ð Þ 2;1;1ð ÞM

�1
2;1;1ð Þ 2;1;1ð ÞE 2;1;1ð Þ 2;0;1ð Þ. (B.5)
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[3] R. Picó, F. Gautier, J. Redondo, Acoustic input impedance of a vibrating cylindrical tube, Journal of Sound and Vibration, in press,

doi:10.1016/j.jsv.2006.10.030.

[4] B. Gazengel, J. Gilbert, N. Amir, Time domain simulation of single reed wind instrument. From the measured input impedance to the

synthesis signal. Where are the tramps?, Acustica 3 (1995) 445–472.
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